2. Attempt a 3. Assume so A Differentiate be Derive the rela C Discuss differed Explain dyname Plot variation be C Discuss difference Explain dyname Plot variation be Discussed Explain dyname Plot variation dyname Plot	our of the following the etween Porter tion for Gyroent types of danically equiva	om the rea wherever owing. All r and Har oscopic co amping. allent syste	r required Il sub-ques tnell gover	with prop	er justificat equal mark		5 5 5
2. Attempt a 3. Assume si Q1 Attempt any for A Differentiate be B Derive the rela C Discuss differe Explain dynam E Plot variation be Q2 2A. Find the naslightly displace 2B A Porter go kg. Upper link upper links and Find equilibrium	any three frouitable data our of the followers Porter tion for Gyro ent types of danically equiva	om the rea wherever owing. All r and Har oscopic co amping. allent syste	r required Il sub-ques tnell gover	with prop	er justificat equal mark		5 5 5
A Differentiate be Derive the related B Derive the	etween Porter tion for Gyro ent types of da nically equiva	r and Har scopic co amping. llent syste	tnell gover	nor.		250	5 5
A Differentiate be Derive the related B Derive the	etween Porter tion for Gyro ent types of da nically equiva	r and Har scopic co amping. llent syste	tnell gover	nor.		250	5 5
Derive the relation of C Discuss difference Explain dynam E Plot variation of C Plot v	tion for Gyro ent types of da nically equiva	scopic co amping. llent syste	uple during		of ship and d	liscuss its effect.	5 5
D Explain dynam Plot variation b Q2 2A. Find the naslightly displace 2B A Porter go kg. Upper link upper links and Find equilibriu	nically equiva	lent syste	m with cor				
2A. Find the naslightly displace 2B A Porter good kg. Upper links upper links and Find equilibrium		iency rati				aclude graph.	5 5 5
slightly displace 2B A Porter good kg. Upper link upper links and Find equilibriu							
kg. Upper link upper links and Find equilibriu						ndius r when it is	10
Q3	s are 250 mm d lower ends	n long and of lower l	d lower lin links are hi	ks are 350 nged at 40	mm long.Th	the sleeve is 30 me upper ends of the governor axis. tates at 130 mm	10
rpm clockwise 1.Determine th curve of 100 m 2.Calculate the the bow falling	when seen from gyroscopic of radius at a see gyroscopic of with its maximum.	com stern couple and peed of 1 couple and imum vel	The radius of the control of the con	s of gyratic t, if the shi Assume 1 k when the sl period of pi	on of the roto p is steering knot = 1855 hip is pitchir tching is 50	to the right in a m/hr. ng in SHM, with sec and the total	10
acceleration du 3B. An under	uring the pitch damped shoc uring a road b of vibration sl	hing motion k absorbe bump, the houd redu	on. er is to be of damped per side to one-side.	designed for eriod of vib sixteen in o	or a motorcy ration is lim one cycle.	Find maximum cle of mass 200 ited to 2 sec and	10

-	\mathbf{a}	4	
•		4	

	4A. In a vertical double acting steam engine, the connecting rod is 4.5 times the crank .The mass of reciprocating parts is 120 kg and the stroke of the piston is 440 mm. The engine runs at 250 rpm. If the net load on the piston due to steam pressure is 25 KN when the crank has turned through an angle of 1200 from the TDC, Determine								
	1.thrust in connecting rod	2.thrust on cylinder	3.tangential force on crank pin						
	4.thrust on bearing	5.turning moment on cr	rankshaft						
	friction between block and	surface on which its slides eleased. Calculate amplitud	is 1.5 x 10 ⁵ N/m. The coefficient of is 0.15. The block is displaced 12 de of motion at the end of the first	10					
\ <i>E</i>									
) 5.	is observed to be 0.6 cm. If t	he undamped natural freque under the maximum force is	a system under harmonic excitation ency of the system is 6 Hz. And the 0.3 cm, estimate the damping ratio	12					
	machine running at 100 rpr	n. The instrument gives rene amplitude of displacem	Hz is used to measure vibration of ading for relative displacement of nent, velocity and acceleration of	08					
N ONE									
50.	200 mm and 350 mm are 250 angles between the successive	0 kg, 350 kg, 240 kg and 20 ye masses are 40-degree, 70	adii of rotation as 250 mm, 150 mm, 0 kg in magnitude respectively. The degree and 130 degree respectively. quired, if its radius of rotation is 150	08					
	mm.								
	6B. i) Write short note on par	tial balancing in reciprocating	masses.	07					
	ii) Discuss fault diagnosis			05					
				03					

39655

Time: 3 Hours Total Marks:80

Note:

- 1) Question No. 1 is compulsory.
- 2) Answer any three out of the remaining five questions.
- 3) Figures to the right indicate full marks.
- 4) Illustrate answers with neat sketches wherever required.

Q1 Solve any four

- a) How optimization problems can be classified (5
- c) Illustrate difference in linear and nonlinear optimization problem with suitable (5) example.
- d) State methods of normalization and explain any one. (5)
- e) Explain Taguchi's loss function (5)
- Q2 a) Solve the following problem by simplex method Maximize $Z = 30x_1 + 20x_2$ Subject to $x_1 + x_2 <= 40$ $x_1 - x_2 <= 20$ $x_1, x_2 >= 0$ (10)
 - b) A company manufactures around 200 bikes. Depending upon the availability of raw materials and other conditions, the daily production has been varying from 196 to (10) 204 bikes, whose probability distribution is as given below:

Production/day	196	197	198	199	200	201	202	203	204
Probability	0.05	0.09	0.12	0.14	0.20	0.15	0.11	0.08	0.06

The finished bikes are transported in a specially designed three-storied lorry that can accommodate only 200 mopeds. Using the following 10 random numbers: 82, 89, 78, 24, 53, 61, 18, 45, 23, and 50, simulate production for 10 days

- (a) What will be the average number of bikes made in 10 days?
- (b) What will average number of bikes waiting in company to be transported in 10 days
- Q3 a) Using the Lagrange's multiplier method solve the following NLPP Optimize $Z = 4x_1^2 + 2x_2^2 + x_3^2 4x_1x_2$ S.T. $x_1 + x_2 + x_3 = 15$ $x_1, x_2, x_3 \ge 0$ (10)

39016 Page 1 of 2

- A company sells two different products A and B, making a profit of Rs 40 and Rs 30 per unit, respectively. They are both produced with the help of a common production process and are sold in two different markets. The production process has a total capacity of 30,000 man-hours. It takes three hours to produce a unit of A and one hour to produce a unit of B. The market has been surveyed and company officials feel that the maximum number of units of A that can be sold is 8,000 units and that of B is 12,000 units. Subject to these limitations, products can be sold in any combination. Formulate this problem as an LP model to maximize profit.
- c) State various Linear programming methods and state its suitability with illustration (5)
- Q4 a) What are the various non-traditional optimisation techniques? Explain any one with (10) illustration.
 - b) Discuss in brief some applications of Optimization in Engineering (5)
 - c) A manufacturing firm produces two types of products: A and B. The unit profit from product A is Rs 200 and that of product B is Rs 150. The goal of the firm is to earn a total profit of exactly Rs 900 in the next week. The demand of A and B are upto maximum 30 and 40 quantities respectively. Formulate as a goal programming model.
- Q5 a) Following table shows the various alternatives of Material (M1, M2,...) for piston (10) cyinder, and corresponding attributes as Cost (A1), tensile strength (A2), thermal conductivity (A3), and machinability index (A4) Suggest suitable material using SAW method. Assume equal weight of 0.25 for the all attributes, A1 as non-beneficial and rest all as beneficial attributes for the following case.

No	Alternative	M1(Rs/kg)	A2 (MPa)	A3 (W/m-K)	A4
1	M1	300	7 110 🗸	142	100
2	M2	350	100	125	110
3	M3	375	120	100	105
4	M4	400	130	120	120
5	M5	315	125	135	115

- b) Find the maxima and minima, if any, of the function $f(x) = 4x^3 18x^2 + 27x 7$ (5)
- c) Explain concept of Dynamic programming (5)
- Q6 a) Explain design of experiments. Explain its application and state its importance. (10)
 - b) What we mean by full factorial and fractional factorial experiments. (5)
 - c) Explain concept of robust design (5)

?_____